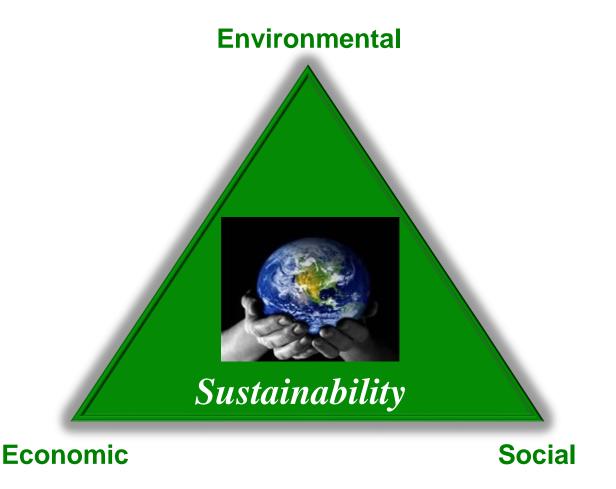


National Slag Association . . . In the Beginning!

- ➤ Established in 1918 to address the huge volumes of slag being generated by the iron and steel industry. At that time
 - 40,000,000 tons of pig iron being produced.
 - 20,000,000 tons of slag being generated.
- ➤ Association adopted the mission to fully identify new potential applications for this coproduct of the iron and steel industry.


National Slag Association . . . Today!

"SLAG . . . The Material of choice"

- ➤ In excess of 20,000,000 tons of slag produced and marketed annually.
- Member companies work closely together to expand utilization and develop new applications.
- Over the past 90 years slag has earned a reputation for long term performance across a wide range of responsible, environmentally sound applications.
- Through a commitment to safe and productive plant operations, NSA member companies continue to demonstrate their dedication to "Safety First"!

SLAG...A Green Product in its Own Right!

SLAG... An Industrial Co-Product of the Iron & Steel Industry

SLAG

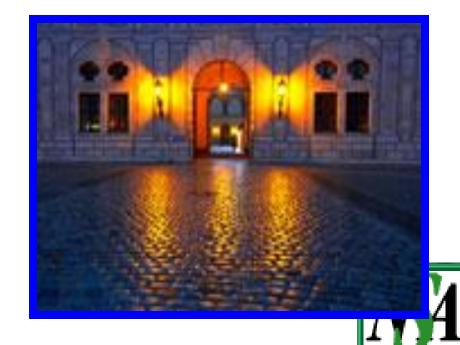
"A material which tends to be mischaracterized and misunderstood!"

Slag usage in road building dates back 2000 years ago to Roman road building.

"Appian Way" in Italy

➤ As early as 1589, Germany made cannon balls out of iron slag.

➤ Perhaps the first introduction of iron slag to America came with the pilgrims as slag was used as ship ballast.



Cast iron slag stones were used for masonry work in Europe in the 18th century.

➤ Slag roads in England go back to

1813.

First Slag road built in the US in 1830.

➤ By 1880 cast blocks of slag were in general use for street paving in both Europe and America.

➤ Major early use in America was as ballast for railroads.

SLAG

WHAT IS SLAG . . . ???

SLAG

- > AS OLD AS THE SMELTING PROCESS ITSELF!
- Every metallurgical smelting process generates Slag as a co-product.
- Slags used in construction applications are primarily co-products of the Iron and Steel making industry.

Types of Slag

- > Iron Blast Furnace Slag (BFS)
 - Air Cooled
 - Granulated
 - Pelletized
- Steel Furnace Slag (SFS)
 - Basic Oxygen Furnace (BOF)
 - Electric Arc Furnace (EAF)
- > Other Slags
 - Foundry
 - Cupola
 - Ladle Metallurgical Furnace

Steel-Making Process

Integrated Mills:

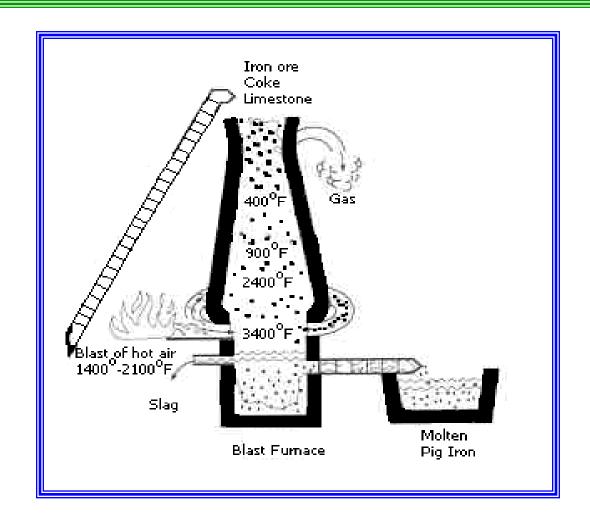
- Blast Furnace Slag (BFS)
- Basic Oxygen Furnace Steel Slag (BOF)

Mini Mills:

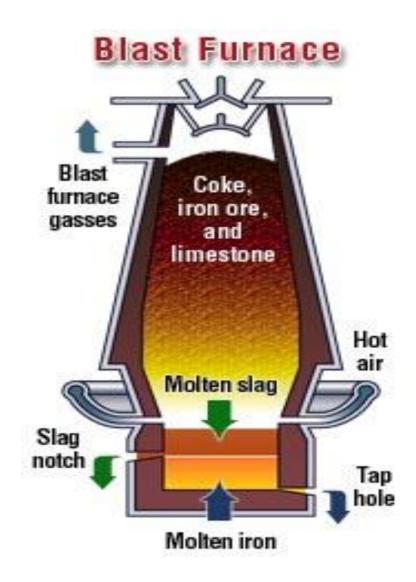
<u>Electric Arc Furnace Steel Slag (EAF)</u>

Integrated Mills

Blast Furnace Slag (BFS)


BLAST FURNACE SLAG

Blast Furnace Slag is formed when iron ore or iron pellets, coke and a flux (either limestone or dolomite) are melted together in a blast furnace. When the metallurgical smelting process is complete, the lime in the flux has been chemically combined with the aluminates and silicates of the ore and coke ash to form a non-metallic product called blast furnace slag. During the period of cooling and hardening from its molten state, BF slag can be cooled in several ways to form any of several types of BF slag products.


Iron Slag Making Process Through a Blast Furnace

Iron Blast Furnace

Blast Furnace Slag (BFS)

- Blast Furnace Slag is most often processed by allowing it to slowly cool by ambient air (Air Cool Blast Furnace Slag or ABCF), is processed through a screening and crushing plant, and then processed into different sizes for use primarily as an aggregate.
- In some instances Blast Furnace Slag may undergo either an expansive or pelletizing process for use in different applications.

GRANULATED SLAG

Granulated Blast Furnace Slag (GBFS)

GRANULATED BLAST FURNACE SLAG

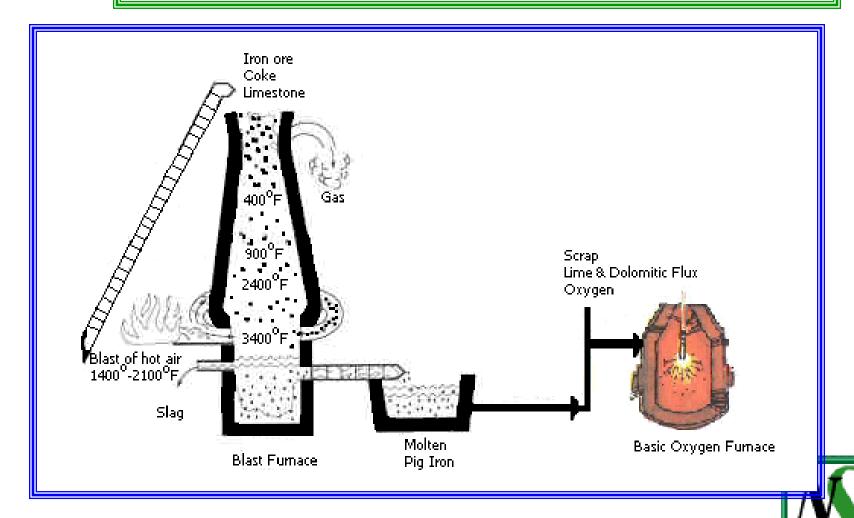
Granulated Blast Furnace slag is produced by being rapidly cooled by large quantities of water to produce a sand-like granule with glass-like properties.

GRANULATED BLAST FURNACE SLAG

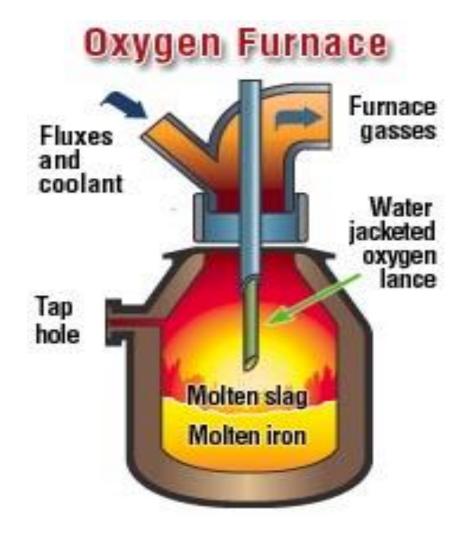
- **▶** Granulated Blast Furnace Slag Applications:
 - Ground to produce Slag Cement.
 - Construction Aggregate (lightweight fill)
 - Raw material in the manufacture of Portland Cement
 - Raw material in the manufacture of glass

Steel Slag

- **Basic Oxygen Furnace Slag (BOF)**
 - > Electric Arc Furnace Slag (EAF)


STEEL FURNACE SLAG

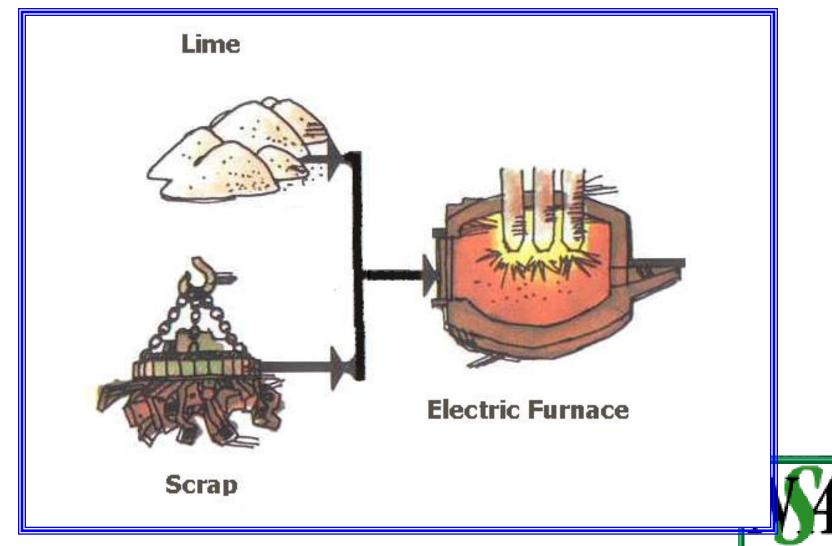
Steel Furnace Slag is produced in a (BOF) Basic Oxygen Furnace or an (EAF) Electric Arc Furnace. Hot iron (BOF) and/or scrap metal (EAF) are the primary metals to make steel in each process. Lime is injected to act a fluxing agent. The lime combines with the silicates, aluminum oxides, magnesium oxides, manganese oxides and ferrites to form steel furnace slag, commonly called steel slag. Slag is poured from the furnace in a molten state. After cooling from its molten state, steel slag is processed to remove all free metalilcs and sized into products.



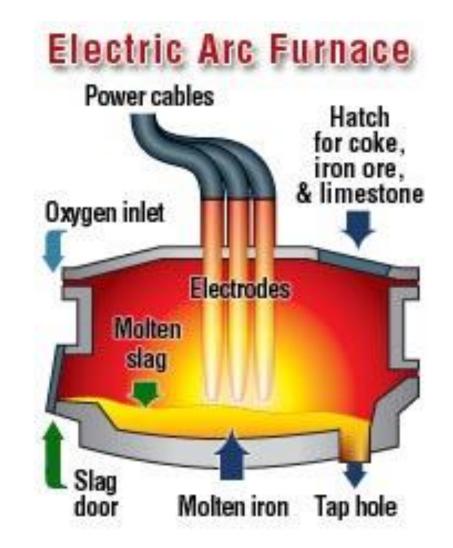
Steel Slag Made Through A Basic Oxygen Furnace

Basic Oxygen Furnace

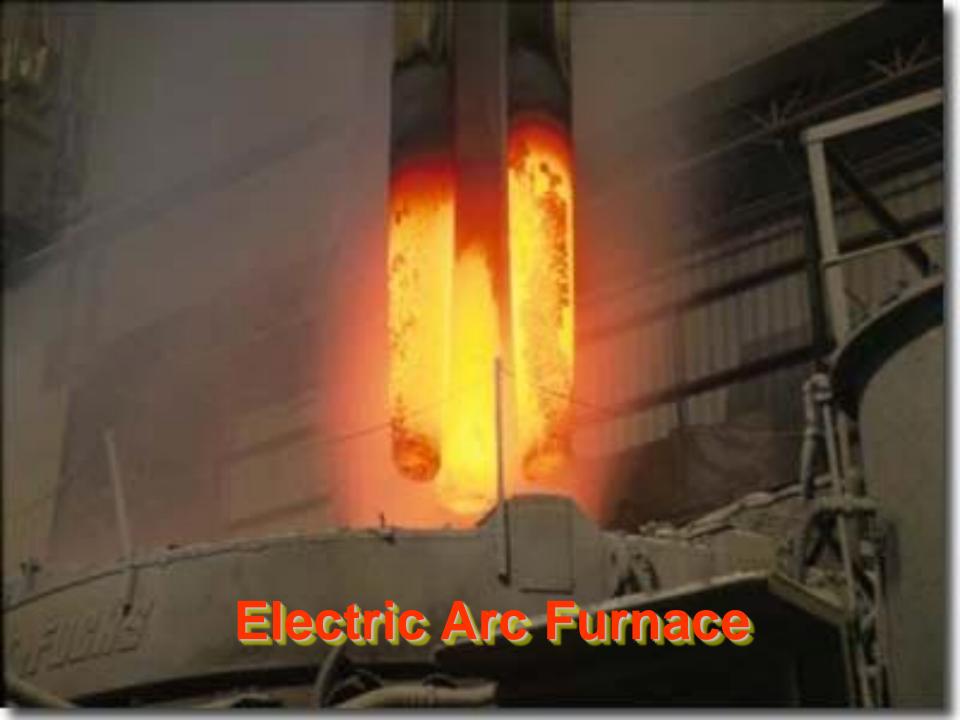
Mini Mills


Steel Slag

Electric Arc Furnace Slag (EAF)



Process of Steel Slag (EAF)



Steel Slag (EAF)

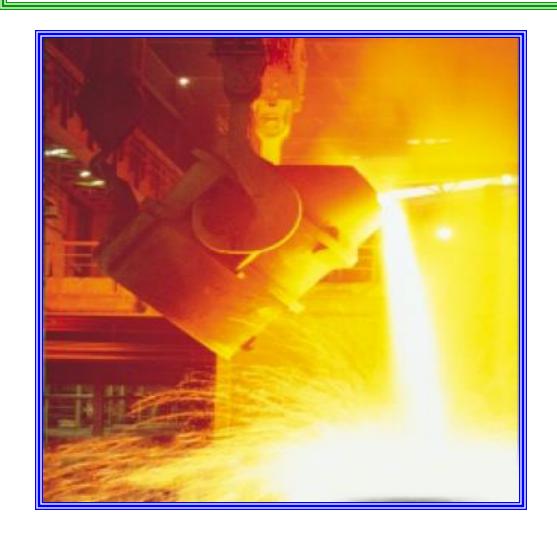
STEEL FURNACE SLAG

Steel slag is processed as an air-cooled material. The free metallics are magnetically separated and the material is separated and sized into construction aggregates, used as an agricultural soil amendment, as a raw ingredient in Portland cement production, as an environmental remediation material and other uses.

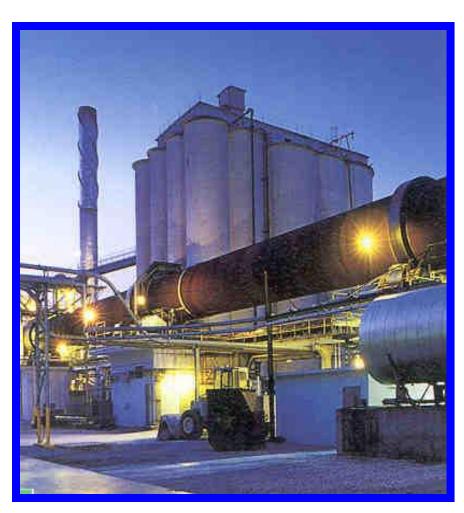
Foundry Slag / Cupola Slag

- Slags produced by metal casting foundries subject to the type of process being used.
 - Cupola Slag (air-cooled or water-quenched)
 - Induction Furnace Slag
 - Electric Arc Furnace Slag
 - Desulphurization Slag
- Properties and chemistries vary widely due to the type of processing and materials used.

Ladle Metallurgical Furnace Slag



- Slags that are co-products of specialized iron or steel manufacturing.
- ➤ Ferroalloys and Fluxes are added to the ladle to drive attainment of a particular chemistry.
- Slags possessing specialized chemistries such as high CaO can be produced.
- > Volumes of Slag produced are generally lower than that typically seen in an iron or steel blast furnace.


Other Proven Uses for Slag!

Clinker From Steel Making Slags

"A Productivity and Environmental Solution"

Steel Industry

Why is Slag of interest to the Cement Producer . . . ?

The Chemistry of Slag is very similar to the basic materials found in Portland Cement!

SLAG & CEMENT PRODUCTION

- Slag has been proven to be a valuable material addition in the Cement Production Process
 - Can be used as a supplemental raw material addition to the materials blended as feed and fed into a kiln to produce cement clinker.
 - Can be used as a grinding aid in the cement grinding and finishing process.

SLAG & CEMENT PRODUCTION

≻CemStar

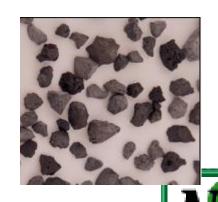
 Patented Process that uses Steel Slag and/or ACBF Slag added directly into the back of a cement kiln during the pyro-processing (burning) process to create cement clinker.

CemStar

- ➤ Increases the Production of Cement Clinker. (Slag is precalcined!)
- Reduces the consumption of natural fuels while increasing Productivity.
- > Reduces Greenhouse Gases
 - CO₂
 - NOx
 - Sox
- ➤ Increases the Sustainability of Natural Aggregate Sources.

Construction Aggregate Applications

- > Aggregate Properties:
 - Rough, cubicle texture
 - Increased toughness & soundness
 - No deleterious materials


Rounded Uncrushed Gravel

Flat & Elongated Limestone

Cubical Steel Slag

Steel Furnace Slag for Bituminous Paving

- Steel Slag has evolved as an ideal aggregate in Hot Mix Asphalt (HMA) surface mixture applications.
 - Superior Skid Resistance
 - Improved frictional properties
 - Higher coefficient of friction than most natural aggregates.
 - High Shear Strength
 - Resistance to rutting

"Chip and Seal"

Chip and Seal

- 1. After the surface has been prepared by patching, crack filling, etc. a binder is sprayed from a computer controlled and calibrated spray unit.
- 2. Then a layer of aggregate is applied using a computer controlled and calibrated self-propelled chip spreader.

3. The process is completed by compacting the surface via several passes from a multi-tired roller.

Chip and Seal

- Physically, many natural aggregates are unable to provide a surface that will resist polishing, therefore, they easily become slippery when wet.
- > Steel slag contributes a high coefficient of friction to the roads surface by providing the roughness necessary to attain a skid resistant pavement.
- ➤ Steel Slag, with its hard, angular, skid resistant shape, low absorption, and greater asphalt binder affinity is the most advantageous choice of aggregate for Chip and Seal applications.

"Chip and Seal"

Chip and Seal is a cost-effective method of resurfacing low-volume roadways in rural areas!

ACBF & Steel Furnace Slag

Other Construction Applications

- Unimproved Roadways & Parking Lots
- > **Driveways**
- > Shoulders & Berms
- **Embankments**
- > Fill Applications

▶ Base & Fill Applications

- The chemical composition of some Steel Slag tends to be expansive and should not be used where potential expansion would be detrimental. This is especially true where a dense graded aggregate is used as a base or fill.
- Depending upon the level of potential expansion and material gradation, confined applications such as bases under pavements and structures may need to be avoided.
- Most Steel Slags however are suitable for use in applications where expansion will not be an issue such as in an open-graded fill or road surface course.

Pipe Bedding for Sewer and Storm Water Pipe

Sewer Pipes Through the Ages

Ancient Pipes

Multiplies Date, a female of 35,000 in the broken Rose Valley (modflere Publisher), is considered by many historians to be the birthplace of sewers. Regioning around 1500 BCE, drains made of out stone at man-made manney units; mittally open topped but later covered, serie developed and became the prototype

The furth of pipe occurred at about the same time to Subyton (Srag) - nan-cured Cand later hulland) terra unita pipe made and manufacture expendencies, matrix bed and spaget points.

The lifes of inverse and pipes spread for and wide over the next lies thousand years—into Acts, the Middle Cart and Europe. The Roman Empire particularly had an extensive system of end ottoms torowers and developed the use of abstrator level pigen for mater. Their overtane of level in throught to have contributed to their shortened life experiencies.

Early Pipes in Europe

ARREST Ages name is obtained by samiltaklum. Elmonagh name STREET BUTTON WHEE as the 5000s percentally pignes were consistly musty in this

Partie seas mess of this first cities to net already smoot adular about every streetmeanly 4000 kms to all. Their present management of many new bless how their character, universally for some ment, unsigned therebyes to chear the present, including boots. and the placement of other ,

construction of a new sensor system in the 1860s. Egg-shaped severs and "separate" are (non-more wester) were showinged to Emplanel. The new concepts spread rapidly Monaghout Europe. Typically large seasors were built of brick or put stores, the smaller uters of oley, cast been or wood.

U.S. Experience

to the United States, challen and other diseases became a problem after the Chill War, and the first gerenation of American civil engineers looked to England and Europe for solutions. The first new separate sanitary seven registers were in Managhia, Tennessees, mittally saling 6" ID clay pipe (no manholog), and later 8" ID (with manholog). Clay became the dominant age material for a time across the U.S., and clay pipe factories now therapproper the United States.

The availability of wood and the re-training of natporters furniture makers, etc., facilitated the use of smooth first trader and sover paper, through somega-and moved did out work well together because of the adverse offschi of the softlers and softlers and more, for severage. The simplest would pipes were Eucliowed and higs. Others were made with wood statues, offices would with ideal wire for strongth.

including wood, cast from and constrain to the late 1800s, segmental block pipe evolved: when made of glazzel clay, it became community known as "clay life" pipe. It proved strong but when it did fall, it often did to more catastrophically thus brick.

of otpoor, priper from the fellowanes owner & from

The basic design of sewers has not changed substantially since the resid-to-late 980th, but many pipe significant horse bean added to the early choice. The first U.V. can been beanedly appeared in New Jorsey to the early 1800s, and Philadelphia was the first U.V. can be not call from exchanged on a time. Steel was sometimes used but was less common due to its cost. City brick (salt-glazed and later strelled) was widely used and is still to beneficial service to sewers throughout the US.

The scarcity of materials storing and after smirtd War It led to some unusual pipe materials, trotteding British papier mache pipe reads from old neerpapers impregnated with pitch. Codter impregnated wood fibre pipe (offers called Orangelacy or Black pipe) evolved to help reduce the cost of housing after World War 8. Ground-up wood critains filter was centrifugally spun to form the wall of a circular pipe Once dried, the pipe was dipped in but coul for to fill any weich in the pipe real. This was the

pipe material of choice for laterals from the mid-1940s to the early- to mid-1970s, when placific pripe strove this material out of faulmen.

Depending manching come the Changelines pipe. Fifter Committee, 49 (1994).

Today, the sewer pipe materials available include sitrified clay. putyerryl shinetide. HOWE, shotlike irost and reinforted concrets pipe. Implaffation inchniques are emplify changing from the open trench approach to trenchless methods. Although PVC was first recognized as a material in 1815, it was first tried for water and sever pipe in Germany in the 1910s. Due like it was was first developed during WW II and used as a pipe material starting in the 7900s.

➢ Pipe Backfill

> Leach Field Stone

> Septic Stone

Cloacina - Goddess of the Sewers

The Shrine of Cloacina

Hastings Asserting COT I in the Roman Forum with the civilar shrine of Versus Closectors in frame. The abrune wood at the place where the Closco Manima enterted the Forum (see map below) and may have included a marchele entiance into the sewer. Its placement in the lieum indicates an important status for Cloacing

Cleacina

Rome was justly proud of its extensive sewer system and embodied this pride in a goddess - Cloacona, the patron goddess of the Cloaca Maxima and the city's sewer system and workers. She is thought to have been initially adopted from Erruscan culture. Over time, Cloucina became identified with Venus, the goddess of love. She was celebrated in a storing to the Roman Forum (an experient civic center in Rome), and was featured on Roman coins and in posme

> O'Closcina, Goddens of this place. Look on thy suppliants with a smiling Jacc. Soft, yet cohouse let their offerings flow, Most roughly south mor impolently allow ?

Rome's Greatest Sewer

The Jargest sever in Rome's system was a massive drain made of cut stone, known as the Closea Martina, or "Main drain," persons of which and ever and are in service soday. Construction of the Clear Maxima began circa 500 BCF, probably by Errescan workers. Its original purpose was to drain a mersh upon which a large portion of the city was eventually holds The Clours Maxima discharged its flow into the Tiber Roys: (The Clours Maxima soon became a "combined" system, mine must want from the city was thrown into the streets, wasting for other the city's extensive miner flashing program or rain to fligh it tops the underground sewer system. Early on: drains from public buildings and the homes of important public officials were the only "private" committees allowed to drain directly into the system and the Cloaca Marena. Laterals from other hutldings and the vast majority of the city's horses were filegal until approx. T50 AD.

Consequence of a typical flower street, directing load water paper and the sensing data. — all studes the confined street. Learned belongly sensing must be appeared from southly buildingly flowers. The control popular leaf major confine appears from the street popular leaf major confined to the confined street street leaf major confined to the confined street street leaf major confined to the confined street leaf to th cofferent" and "crack" at sort, must of which reconcilly desired her the Cleans

- or Class Chance Married Services horms and appeared in arrevely for many transactor, maluding these steems of no number team the
- Tither Store (#10%, and Same Infoquation's bond's being cleaners sons the Triber Street (#11) much the Check Mesone's parket lower so the background!
- S. Chicarop of California of Los Angelos: A. Fredrick State of California Control Cont

COMMON USES FOR SLAG

Bla	Steel			
Air-Cooled	Pelletized	Granulated	Slag	
Asphalt Aggregate	Concrete Masonry Aggregate	GGBFS Cement	Asphalt Aggregate	
Concrete/Masonry Aggregate	Lightweight Concrete	Soil Cement	Fill	
Insulation/Mineral Wool	Insulation	Roller Compacted Concrete	Cement Mfg. Raw Feed	
Cement Mfg. Raw Feed	Lightweight Fill	Agricultural/Soil Amendment	Agricultural/Soil Amendment	
Agriculture/Soil Amendment	Road Base		Environmental Applications	
Base & Fill Material			Railroad Ballast	
Roof Aggregate			Road Base	
Railroad Ballast			Gabions/Rip Rap	
Glass Manufacture				
Environmental Applications				
Gabions/Rip Rap				

Agricultural Applications

- Substitute for Agricultural Lime
- Valuable for Remineralization:

Calcium Iron

Copper Boron

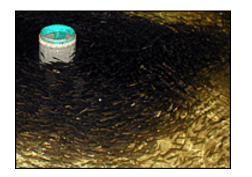
Magnesium Zinc

Manganese

Sulfur

Molybdenum

Slag's use for Environmental Remediation


Water Purification

Permeable Reactive Barrier

Water Filtration

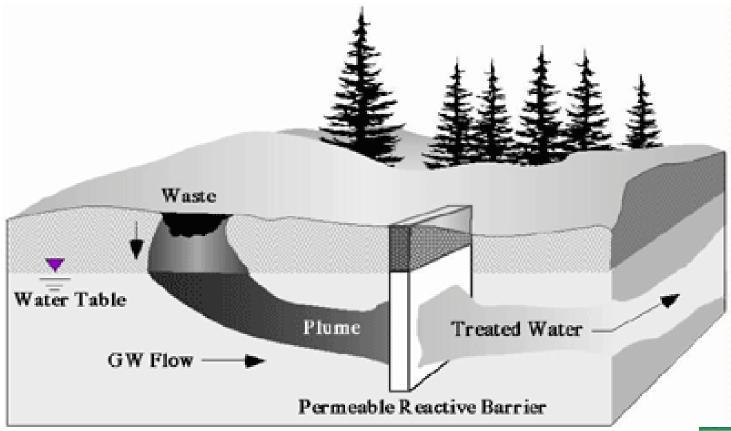
Phosphorus Removal

Erosion Contro

Environmental Remediation

- Water Purification
- Hazardous Chemicals
- Permeable Reactive Barriers
- Acid Remediation
 - ✓ Acid Mine Drainage
 - Phosphorus
- Waste Pollution Remediation (Constructed Wetlands Technology)
 - ✓ Manure Pit Effluents
 - ✓ Barnyard & Feed Lot Effluents
 - ✓ Milk House Effluents

Slag Utilization for Water Pollution Remediation


Slag for Permeable Reactive Barriers

Slag for Permeable Reactive Barriers

National Slag Association Annual Meeting 2006

Presentation on the utilization of Slag to reduce Acid Mine Drainage

Jim Gue – Ohio Department of Natural Resources

"PASSIVE TREATMENT OF ACID MINE DRAINAGE USING STEEL SLAG IN THE HUFF RUN WATERSHED"

Huff Run Watershed

- Muskingum
 Conservancy District
- Tuscawaras River Basin
- Conotton Creek
- 10 miles length
- 14.1 sq miles

A Primary Huff Run AMDAT Goal:

Huff Run Watershed

Acid Mine Drainage Abatement and Treatment Plan

Prepared By:

Gannett Fleming

March 2000

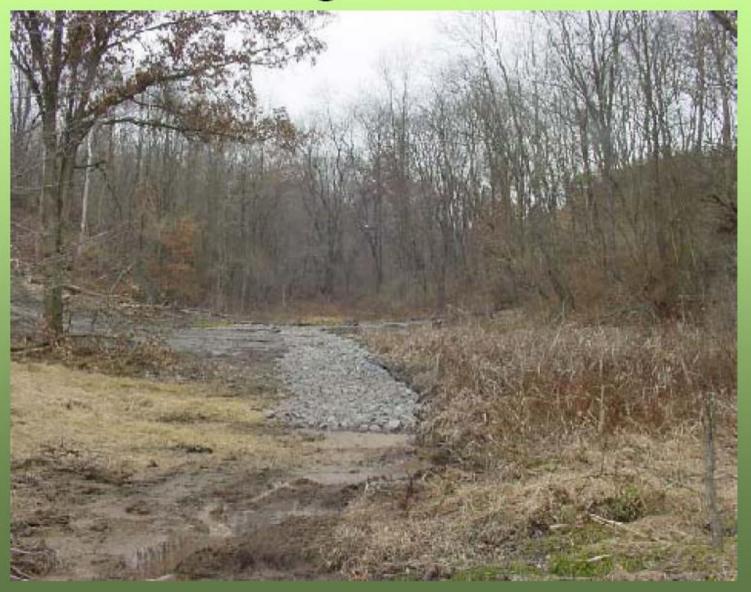
"Identify and develop AMD abatement Projects in reaches 4 and 5 to buffer downstream episodic low flow pH excursions."

Pre-Construction Water Quality

Project Sample Location	рН	Fe	Mn	Al
Seep at Headwaters	5.8	.648	18.5	.357
Pond 1	2.99	6.94	44.1	21.3
Pond 2	6.64	.258	1.44	<.25
Impoundment 4	4.64	.169	12.3	.987
Impoundment 6	6.28	1.85	5.47	<.25
Wetland Outlet	4.78	.302	15.1	.51
Site Discharge	3.97	.75	18.8	3.33

pH (SU)

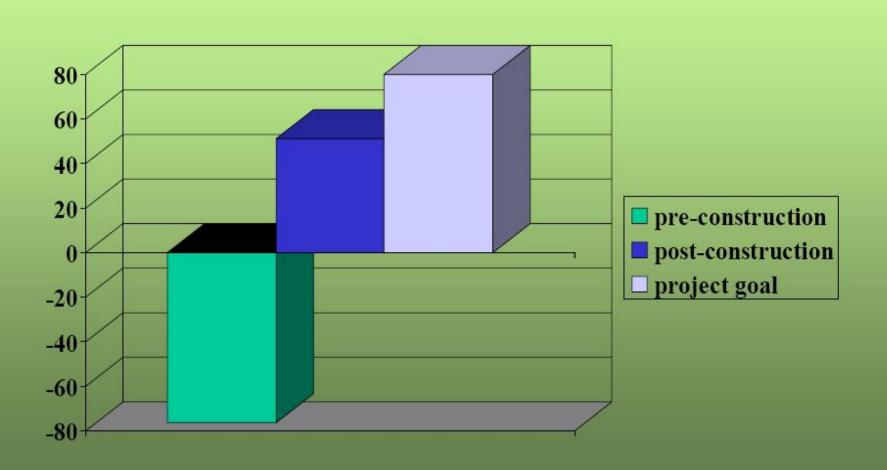
Metals (mg/l)


Steel Slag Advantages:

- •Steel slags yield several hundred times more alkalinity per equal weight than limestone
- •High alkalinity with low contact time
- •Low cost (\$12.00/ton at Lindentree Project)
- •Ease of availability
- •Long-term passive treatment

Limestone/Steel Slag Channel

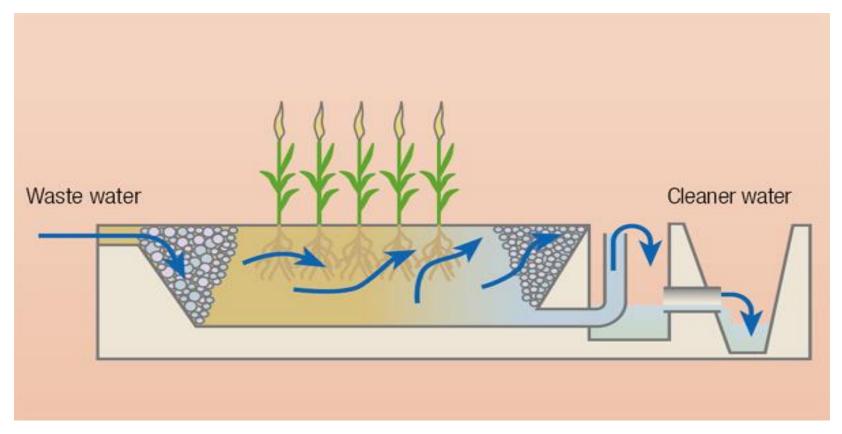
Limestone/Slag Treatment Swale


Limestone Rip-Rap Channel

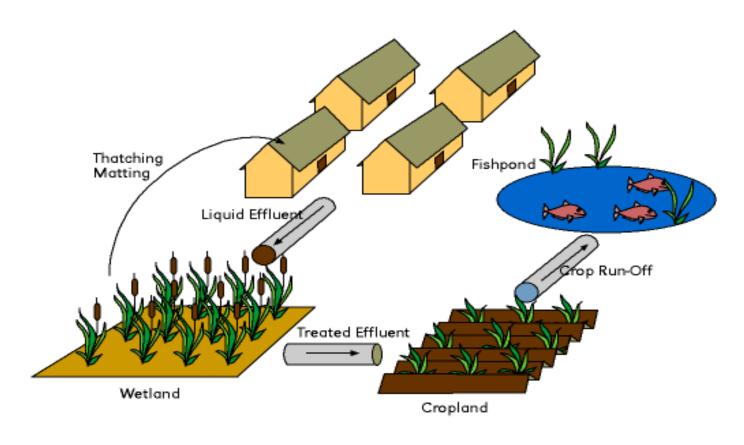
Discharge Analysis (pH)

Site Location	Pre-construction (4-11-02)	Post-construction (11-17-04)
Pond 6 discharge (limestone channel 2)	6.28	6.0
Slag channel 5	6.25, 4.87, 4.64, 6.8	10.5
Pond 1 (slag channel 7)	2.99	11.0
Channel 6	4.5, 6.64	10.0
Bog discharge into slag swale	5.88	7.0
Slag Swale Outlet		11.0
Weir outlet	4.78	10.0
Project Outlet Channel, downgrade	3.97	9.0
Brass Road Culvert	3.97	8.0

Acidity/Alkalinity (mg CaCO3/L)


Steel Slag

Use of Steel Slag in Constructed Wetlands Technology to effect P (Phosphorus) removal.


Constructed Wetlands

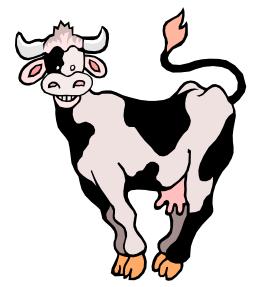
Constructed Wetlands

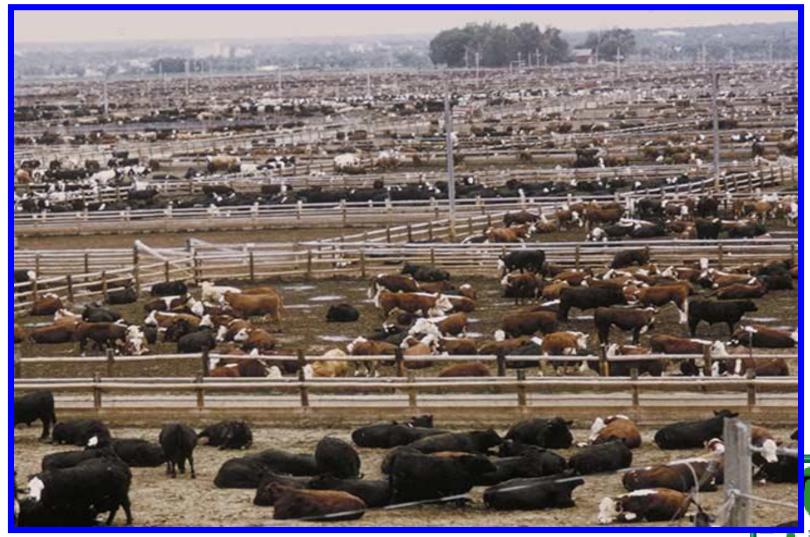
Constructed Wetlands UKRAINE (Before)

Constructed Wetlands UKRAINE (After)

Constructed Wetlands Africa

Constructed Wetlands Nevada


SLAG for Farm and Ranch Runoff


Steel Slag

Use of Steel Slag as a filter medium to treat water runoff from barnyards, feedlots, and milk house effluent.

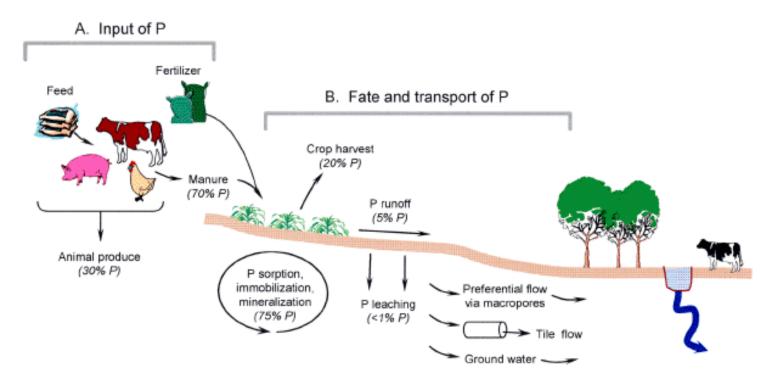


Figure 4 - Factors affecting the input, fate, and transport of P in agricultural systems. Numbers in parentheses are based on approximate farm inputs of P in animal feed and fertilizer and output in animal produce (A) and manure and fate in soils, crops, and transport in runoff (B). Adapted from Howarth et al. (2000) and Sims and Sharpley (2005).

SLAG as a "Green" Material!

Hundreds of years of use as an industrial co-product!

➤ A multitude of applications which contribute to its capabilities as a "Green Material"!

"The recovery and reuse of slag conserves tens of millions of tons per year of other natural resources"

American Iron and Steel Institute

SLAG & the LEED Program!

"SLAG is a recognized industrial co-product under the LEED Program!"

LEED....What is LEED®?

LEED stands for <u>Leadership in Energy</u> and <u>Environmental Design</u>.

It is a green building rating system first launched by the US Green Building Council (USGBC) in 1998. The USGBC is a not for profit organization made up of companies and organizations from every sector of the building industry, who work to promote buildings that are environmentally responsible, healthy and profitable.

LEED....What is LEED®?

- ➤ LEED is a third party certification program and the nationally accepted benchmark for the design, construction and operation of high performance green buildings.
- LEED gives building owners and operators the tools they need to have an immediate and measurable impact on their buildings' performance.
- Establishes a rating system to evaluate green construction materials and building systems.

LEED: Green Building Rating System

- Encourages and accelerates global adoption of sustainable green building and development practices through the creation and implementation of universally understood and accepted tools and performance criteria.
- Developed by USGBC, LEED is a practical rating tool for green building design and construction that provides immediate and measurable results for building owners and occupants.

LEED: Green Building Rating System

- ➤ LEED promotes a whole-building approach to sustainability by recognizing state-of-the-art strategies for performance in five key areas of human and environmental health:
 - Sustainable site development
 - Water savings
 - Energy efficiency
 - Materials selection
 - Indoor environmental quality
- Builders can obtain credits for using materials or systems which are more energy efficient in construction, utilize recycled waste materials from other industries, or result in a more energy efficient and environmentally sound building.

SLAG

"A Green Product in its own right!!!"

SLAG... An Industrial Co-Product of the Iron & Steel Industry

Questions????

CONTACT INFORMATION

>John Murphy

• The Edw. C. Levy Company

• Office #: (256) 306-9477

• Fax #: (256) 306-9488

• Cell #: (574) 876-0466

Email: <u>imurphy@levyco.net</u>

► National Slag Association

Website: www.nationalslag.org

SLAG... An Industrial Co-Product of the Iron & Steel Industry

THANK YOU!!!!

